DMB 412UNI
 3 IIGIT PROGGRAMMALLE UNIVERSAL BARGRAPH

DC VOLTMETER/AMMETER
PROCESS MONITOR
OHMMETER
THERMOMETER FOR PT/NI/CU
THERMOMETER FOR THERMOCOUPLES

SAFETY INSTRUCTIONS

Please, read the enclosed safety instructions carefully and observe them!
These instruments should be safeguarded by isolated or common fuses (breakers)!
For safety information the EN 61 010-1 + A2 standard must be observed.
This instrument is not explosion-safe!

TECHNICAL DATA

Measuring instruments of the OMB 412 series conform to the European regulation 89/336/EWG.

The instruments are up to the following European standards:
EN 61010-1 Electrical safety
EN 61326-1 Electronic measuring, control and laboratory devices - Requirements for EMC "Industrial use"

Seismic capacity:
IEC 980: 1993, čl. 6

The instruments are applicable for unlimited use in agricultural and industrial areas.

CONNECTION

Supply of energy from the main line has to be isolated from the measuring leads.

c e

ORBIT MERRET, spol. s r.o.

Vodnanska 675/30
19800 Prague 9
Czech Republic
Tel: +420-281040 200
Fax: +420-281040 299
e-mail: orbit@merret.eu
www.orbit.merret.eu

$2 \mid$ INSTRUCTIDNS FOR USE OMB 412UNI

1. CONTENTS 3
2. INSTRUMENT DESCRIPTION 4
3. INSTRUMENT CONNECTION 6
Measuring ranges 6
Termination of RS 485 communication line 6
Instrument connection 7
Recommended connection of sensors 8
4. INSTRUMENT SETTING 10
Symbols used in the instructions 12
Setting the DP and the [-J sign 12
Control keys function 13
Setting/permitting items into "USER" menu 13
5. SETTING "LIGHT" MENU 14
5.0 Description "LIGHT" menu 14
Setting input - Type "DC" 18
Setting input - Type "PM" 20
Setting input - Type "OHM" 22
Setting input - Type "RTD - Pt" 24
Setting input - Type "RTD - N" 26
Setting input - Type "T/C" 28
Setting input - Type "DU" 30
Setting input - Type "RTD - Cu" 32
Setting Limits 34
Setting analog output 36
Selection of bargraph projection 38
Selection of programming menu „LIGHT"/„PROF|" 40
Restoration of manufacture setting 40
Calibration - input range [DU] 41
Selection of instrument menu language version 42
Setting new access password 42
Instrument identification 43
6. SETTING "PROFI" MENU 44
6.0 Description of "PROFI" menu 44
6.1 "PROFI" menu - INPUT
6.1.1 Resetting internal values 48
6.1.2 Setting measuring type, range, mode, rate 49
6.1.3 Setting the Real Time 53
6.1.4 External input function selection 53
6.1.5 Optional accessory functions of the keys 54
6.2 "PROFI" menu - CHANNEL
6.2.1 Setting measuring parameters (projection, filters, decimal point, description]. 58
6.2.2 Setting mathematic functions 61
6.2.3 Selection of evaluation of min/max. value 63
6.3 "PROFI" menu - OUTPUT
6.3.1 Setting data logging 64
6.3.2 Setting Limits 66
6.3.3 Setting data output 59
6.3.4 Setting analog output 70
6.3.5 Selection of display projection 72
6.3.5 Selection of bargraph projection 73
6.4 "PROFI" menu - SERVICE
6.4.1 Selection of programming menu "LIGHT"/.PROF|" 78
6.4.2 Restoration manufacture setting 79
6.4.3 Calibration - input range (ロU) 80
6.4.4 Selection of instrument menu language version 80
6.4.5 Setting new access password 80
6.4.6 Instrument identification 81
7. SETTING ITEMS INTO "USER" MENU 82
8. METHOD DF MEASURING DF THE CDLD JUNCTIDN. 8 84
9. ERROR STATEMENTS 85
10.DATA PROTOCOL 86
10. TECHNICAL DATA 88
11. INSTRUMENT DIMENSIONS AND INSTALATION 90
12. CERTIFICATE OF GUARANTEE 91

2. INSTRUMENT DESCRIPTION

DESCRIPTION

The CMB 412 model series are 24 LED, 3-colour panel programmable horizontal bargraph designed for maximum efficiency and user comfort while maintaining their favourable price. Two models are available: UNI and PWR.
Type OMB 4O2UNI is a multifunction instrument with the option of configuration for 8 various input options, easily configurable in the instrument menu. By further options of input modules it is feasible to measure larger ranges of DC voltage and current or increase the number of inputs up to 4 [applies for PM].
The instrument is based on an 8-bit microcontroller with a multichannel 24-bit sigma-delta converter, which secures high accuracy, stability and easy operation of the instrument.

TYPES AND RANGES

UNI
DC: $\quad 0 . . .60 / 150 / 300 / 1200 \mathrm{mV}$
PM: $\quad 0 . . .5 / 20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA} ; \pm 2 / \pm 5 / \pm 10 / \pm 40 \mathrm{~V}$
OHM: $\quad 0 . . .100 \Omega / 0 . .1 / 10 / 100 \mathrm{k} \Omega$
RTD-Pt: Pt 50/100/500/1000
RTD-Cu: Cu 50/100
RTD-Ni: Ni 1 000/10 000
T/C: $\quad J / K / T / E / B / S / R / N / L$
DU: Linear potentiometer (min. 500)
UNI - A DC: $\pm 0,1 / \pm 0,25 / \pm 0,5 / \pm 2 / \pm 5 ; \pm 100 / \pm 250 / \pm 500 \mathrm{~V}$
UNI-B $\quad P M: \quad 3 \times 0 \ldots 5 / 20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA} ; \pm 2 / \pm 5 / \pm 10 / \pm 40 \mathrm{~V}$

PROGRAMMABLE PROJECTIDN

Selection:
Measuring range:
Setting:
Projection:
of type of input and measuring range
adjustable as fixed or with automatic change
manual, optional projection on the display may be set in the menu for both limit values of the input signal, e.g. input 0... $20 \mathrm{~mA}>0 . .850$
24-segment LED 3-color bargraph + 3-digit display -99... 999

COMPENSATION

of conduct:
of conduct in probe:
of CJC [T/C]:

LINEARIZATION

Linearization:*

DIGITAL FILTERS

Floating average:
Exponen. average:
Arithmetic average:
Rounding:
by linear interpolation in 50 points [solely via OM Link]
in the menu it is possible to perform compensation for 2-wire connection internal connection (conduct resistance in measuring head) manual or automatic, in the menu it is possible to perform selection of the type of thermocouple and compensation of cold junctions, which is adjustable or automatic[temperature at the brackets)
from 2... 30 measurements
from 2... 100 measurements
from 2... 100 measurements
setting the projection step for display

MATHEMATIC FUCTIDNS

Min/max. value: Tare:
Peak value:
Mat. operations:
registration of min./max. value reached during measurement designed to reset display upon non-zero input signal the display shows only max. or min. value polynome, $1 / x$, logarithm, exponential, power, root, $\sin x$

EXTERNAL CONTROL

Lock:
Hold:
Tare: tare activation/resetting tare to zero
Resetting MM:
Memory:
control keys blocking
display/instrument blocking
resetting $\mathrm{min} / \mathrm{max}$ value
data storage into instrument memory

OPERATION

The instrument is set and controlled by five control keys located on the front panel. All programmable settings of the instrument are performed in three adjusting modes:

LIGHT Simple programming menu
- contains solely items necessary for instrument setting and is protected by optional number code
PROFI Complete programming menu
- contains complete instrument menu and is protected by optional number code
USER User programming menu
- may contain arbitrary items selected from the programming menu [LIGHT/PROFI], which determine the right (see or change)
- acces without password

All programmable parameters are stored in the EEPROM memory [they hold even after the instrument is switched off).

OMLINK
Complete instrument operation and setting may be performed via OM Link communication interface, which is a standard equipment of all instruments.
The operation program is freely accessible (www.orbit.merret.eu) and the only requirement is the purchase of OML cable to connect the instrument to PC. It is manufactured in version RS 232 and USB and is compatible with all ORBIT MERRET instruments. Another option for connection is with the aid of data output RS 232 or RS 485 (without the need of the OML cable].
The program OM LINK in "Basic" version will enable you to connect one instrument with the option of visualization and archiving in PC. The OM Link "Standard" version has no limitation of the number of instruments connected.

2.3 OPTIONS

Excitation is suitable for supplying power to sensors and transmitters. It has a galvanic separation.
Comparators are assigned to monitor one, two, three or four limit values with relay output. The user may select limits regime: LIMIT/DOSING/FROM-TO. The limits have adjustable hysteresis within the full range of the display as well as selectable delay of the switch-on in the range of $0 . . .99,9 \mathrm{~s}$. Reaching the preset limits is signalled by LED and simultaneously by the switch-on of the relevant relay.
Data outputs are for their rate and accuracy suitable for transmission of the measured data for further projection or directly into the control systems. We offer an isolated RS232 and RS485 with the ASCII or DIN MessBus protocol.
Analog outputs will find their place in applications where further evaluating or processing of measured data is required in external devices. We offer universal analog output with the option of selection of the type of output - voltage/current. The value of analog output corresponds with the displayed data and its type and range are selectable in Menu.
Measured data record is an internal time control of data collection. It is suitable where it is necessary to register measured values. Two modes may be used. FAST is designed for fast storage [40 records $/ \mathrm{s}$] of all measured values up to 8000 records. Second mode is RTC, where data record is governed by Real Time with data storage in a selected time segment and cycle. Up to 250000 values may be stored in the instrument memory. Data transmis sion into PC via serial interface RS232/485 and OM Link.

3. INSTRUMENT CONECTION

The instrument supply leads should not be in proximity of the incoming low-potential signals. Contactors, motors with larger input power should not be in proximity of the instrument.
The leads into the instrument input [measured quantity] should be in sufficient distance from all power leads and appliances. Provided this cannot be secured it is necessary to use shielded leads with connection to ground (bracket E).
The instruments are tested in compliance with standards for use in industrial area, yet we recommend to abide by the above mentioned principles.

MEASURING RANGES

TYPE	INPUT I	INPUT U
DC		0...60/150/300/1200 mV
PM	0...5/20 mA/4.. 20 mA	$\pm 2 / \pm 5 / \pm 10 / \pm 40 \mathrm{~V}$
OHM	0... 100 ®/0...1/10/100 kת	
RTD-Pt	Pt 50/100/500/1 000	
RTD-Cu	Cu 50/100	
RTD-Ni	Ni $1000 / 10000$	
T/C	J/K/T/E/B/S/R/N/L	
DU	Linear potentiometer (min. 500)	

TYPE	INPUT I	INPUT U
DC	$\begin{aligned} & \pm 0,1 / \pm 0,25 / \pm 0,5 \text { A to GND [C] } \\ & \pm 2 / \pm 5 \mathrm{~A} \text { to } \mathrm{GND}[\mathrm{~B}] \end{aligned}$	$\pm 100 / \pm 250 / \pm 500 \vee$ to GND (C)
OPTION "B"		
TYPE	INPUT 2, 3, 4/1	INPUT 2, 3, 4/U
PM	0...5/20 mA/4.. 20 mA	$\pm 2 / \pm 5 / \pm 10 / \pm 40 \mathrm{~V}$

Termination of RS 485 communication line

X3 - Termination of commuication line RS 485

Full Significance
$1-2$ connect $\mathrm{L}+$ to $[+]$ source
3-4 termination of line 120 Ohm
5-6 connect L - to $[$.$] source$

Default terminalconnected disconnected terminalconnected

Recomendation
connect at the end of line do not disconnect

RS 485 line should have a linear structure - wires (ideally shielded and twisted) should lead from one device to another.

Example connection of a 2 -wire sensor with current signal output powered by instrument's excitation

Example connection of a 3 -wire sensor with current signal output powered by instrument's excitation

Example connection of resistance measurement using 4 wires

By connecting resistor R^{*} we elimintate error message E. I.Ov. [input overflow] when the measured resistance is disconnected

Terminals

for the measured resistance

* resistor 100... 1000 Ohm

-

SETTING
 PROFI

For expert users
Complete instrument menu
Access is password protected
Possibility to arrange items of the USER MENU
Tree menu structure

SETTING
 LIGHT

For trained users
Only items necessary for instrument setting
Access is password protected
Possibility to arrange items of the USER MENU Linear menu structure

SETTING
 USER

For user operation
Menu items are set by the user [Profi/Light] as per request Access is not password protected Optional menu structure either tree (PROFI) or linear (LIGHT)

The instrument is set and controlled by five control keys located on the front panel. All programmable settings of the instrument are performed in three adjusting modes:

LIGHT

Simple programming menu

- contains solely items necessary for instrument setting and is protected by optional number code

PROFI Complete programming menu

- contains complete instrument menu and is protected by optional number code

USER

User programming menu

- may contain arbitrary items selected from the programming menu (LIGHT/PROFI), which determine the right [see or change]
- acces without password

All programmable parameters are stored in the EEPROM memory [they hold even after the instrument is switched off).
Complete instrument operation and setting may be performed via OM Link communication interface, which is a standard equipment of all instruments.
The operation program is freely accessible (www.orbit.merret.eu) and the only requirement is the purchase of OML cable to connect the instrument to PC. It is manufactured in version RS 232 and USB and is compatible with all ORBIT MERRET instruments. Another option for connection is with the aid of data output RS 232 or RS 485 (without the need of the OML cable).

Scheme of processing the measured signal

Setting and controlling the instrument is performed by means of 5 control keys located on the front panel. With the aid of these keys it is possble to browse through the operation menu and to select and set required values.

Symbols used in the instructions

DEF values preset from manufacture

symbol indicates a flashing light [symbol)
M N inverted triangle indicates the item that can be placed in USER menu

\square
(D)d 30
continues on page 30

Setting the decimal point and the minus sign

DECIMAL POINT

Its selection in the menu, upon modification of the number to be adjusted it is performed by the control key (1) with transition beyond the highest decade, when the decimal point starts flashing. Positioning is performed by \boldsymbol{Q}

THE MINUS SIGN

Setting the minus sign is performed by the key on higher decade. When editing the item substraction must be made from the current number (e.g..: $013>\boldsymbol{}$, on class $100>-87$)

Control keys functions

KEY	MEASUREMENT	MENU	SETTING NUMBERS/SELECTION
	access into USER menu	exit menu	quit editing
	programmable key function	back to previous level	move to higher decade
	programmable key function	move to previous item	move down
	programmable key function	move to next item	move up
	programmable key function	confirm selection	confirm setting/selection
			numeric value is set to zero
	access into LIGHT/PROFI menu		
	direct access into PROFI menu		
		configuration of an item for "USER" menu	
		determine the sequence of items in "USER - LIGHT" menu	

Setting items into "USER" menu

- in LIGHT or PROFI menu
- no items permitted in USER menu from manufacture
- on items marked by inverted triangle

item will not be displayed in USER menu

5. SETTING LIGHT

SETTING LIGHT

For trained users
Only items necessary for instrument setting
Access is password protected
Possibility to arrange items of the USER MENU
Linear menu structure

Identification
ID. © YES OMB 412UN 78-001 PM \square 1428

Preset from manufacture	
Password	"O"
Menu	LIGHT
USER menu	off
Setting the items	DEF

(C)

TYP. Selection of the type of instrument		
primary selection of the type of instrument performs default setting DEF of values from manufacture, incl. calibration DEP = ${ }_{\mathrm{A}} \mathrm{PM}^{*}$	Menu	Type of instrument
	DC	QC voltmeter
	PM	Process monitor
	DHM	Ohmmeter
	Pt	Thermometer for sensors Pt
	Ni	Thermometer for sensors Ni
	TC	Thermometer for thermocouples
	DU	Display for lin. potentiometer
	Cu	Thermometer for sensars Cu
Type "PM"		Example
$\mathrm{DC} \leftrightarrow \mathrm{PM} \otimes \mathrm{MDD}$.		

Type "ロC"	18
Type "PM"	20
Type "OHM"	22
Type "RTD-Pt"	24
Type "RTD-Ni"	26
Type "T/C"	28
Type "Du"	30
Type "RTD-Cu"	32

5. SETTING PROFI

positioning of the DP is set here in the measuring mode

$$
\begin{aligned}
& \text { Projection of DP on display }>00.0 \\
& \begin{array}{c}
000
\end{array}>-\quad \text { BLo. } \\
& \hline 00.0 \text { *subsequent item on the menu depends on } \\
& \text { instrument equipment }
\end{aligned}
$$

江

the DP is automatically shifted after the value is confirmed

DEF $=100$

position of the $\square P$ does not affect display
projection

(-)
Setting projection of the decimal point

$$
\text { DEF }=000
$$

positioning of the DP is set here in the measuring mode

Projection of DP on display $>\mathbf{0 0 . 0}$
000 BLO. 00.0 Example
*subsequent item on the menu depends on
instrument equipment

5. SETTING LIGHT

OHM

5. SETTING LIGHT

RTD - Pt

5. SETTING LIGHT

MEASURING MODE > RTD-Ni

MEASURING MODE > T/C

5. SETTING LIGHT

Calibration of the beginning and the end of range of linear potentiometer is on page 41

5. SETTING LIGHT

RTD - Cu

5. SETTING LIGHT

©
Setting boundary for limit 4

(DE)
$=80$ may be performed in "PROFI" menu
DE
"Hystresis" $=0$, „Delay" $=0$

5. SETTING LIGHT

Display value for the beginning of the $A D$ range $>A . L o=0 \quad$ Example

Type „DC*	[\|]d 42
Type "PM"	[1] 42
Type "OHM"	[D] 42
Type "Pt"	[1] 42
Type "Ni"	[D] 42
Type "T/C"	[D] 42
Type "DU"	[D] 41
Type "Cu"	[D] 42

provided you stored your user setting in the "PROFI" menu, it may also be restored (select "USR.")
loading manufacture calibration and primary setting of items on the menu (DEF)

6. SETTING PROFI

SETTING PROFI

For expert users
Complete instrument menu
Access is password protected
Possibility to arrange items of the USER MENU
Tree menu structure

SETTING "PROFI"

PROFI Complete programming menu

- contains complete instrument menu and is protected by optional number code
- designed for expert users
- preset from manufacture is menu LIGHT

Switching over to "PROFI" menu

- access to PROFI menu
- authorization for access to PROFI menu does not depend on setting under item SER. > MNU.
- password protected access (unless set as follows under the item SER. > N.PA. > PRO =0)

C +8

- access to menu selected under item SER. > MNU. > LIG./PRO.
- password protected access (unless set as follows under the item SER. > N.PA. > LIG. =0)
- for access to LIGHT menu passwords for LIGHT and PROFI menu may be used

\bullet

UM θ

O ONO•YES O

AT.

$A, O \quad I N P \Theta O N O \cdot C A \bullet F . A \cdot M F N \cdot M N \bullet M A X$

DS. 9

BAR 9

$$
\begin{aligned}
& \text { INP } \Theta \bullet O F \cdot C A \cdot F . A \cdot M F N \cdot M N \bullet M A X O
\end{aligned}
$$

$$
\begin{aligned}
& \text { BLO } 0 \\
& 100
\end{aligned}
$$

$$
\begin{aligned}
& \Theta \bullet B A D \cdot B L I \cdot M D I \cdot B A I \cdot B L 2 \cdot B A Z \bullet 1 \\
& \text { © OYES•NO-1 }
\end{aligned}
$$

6. SETTING PROFI

6.1 SETTING "PROFI" - INPUT

The primary instrument parameters are set in this menu

CR Resetting internal values

resetting memory for the storage of minimum and maximum value achieved during measurement

Resetting the instrument memory
resetting memory with data measured in the "FAST" or "RTC" modes
not in standard equipment

!

For thermocoule type "B" the items CON. and T.C.J. are not available

6. SETTING PROFI

T.C.

Setting temperature of cold junction
range 0...99${ }^{\circ} \mathrm{C}$ with compensation box

RAD.

Offset of the beginning of the measuring range
in cases when it is necessary to offset the beginning of the range by certain value, e.g. while using sensor in measuring head entered directly in Ohm (0...999)
DE
$=0$

个

6.1.4a EXTERNAL INPUT FUNCTION SELECTION

6. SETTING PROFI

6.1.4b SELECTION OF FUNCTION "HOLD"

Selection of function "HOLD"

D S.	"HOLD" locks only the value displayed
DAO.	"HOLD" locks the value displayed and on AO
DAL.	"HOLD" locks the value displayed, on $A O$ and limit
evaluation	
ALL	"HOLD" locks the entire instrument

6.1.5a OPTIONAL ACCESSORY FUNCTIONS OF THE KEYS

FNL. Assigning further functions to instrument keys
„FN.L." > executive functions

after confirmation of this selection the "MN.L." item is displayed on superior menu level, where required selection is performed

$$
\text { TMP. } \begin{aligned}
& \text { Temporary proje } \\
& \text { selected values }
\end{aligned}
$$

after confirmation of this selection the item "TM.L." is displayed on superior menu level, whererequired selection is performed

TAR Tare function activation

C.M Clearing memory
clearing memory with data measured in modes "FAST" or "RTC"

!

Setting is identical for LEFT, DOWN, UP and ENTER

TM.

Temporary projection of selected item
„TM.L." > temporary projection of selected values
"Temporary" projection of selected value is displayed for the time of keystroke
"Temporary" projection may be switched to permanent by pressing $\mathbf{(}+$ "Selected key", this holds until the stroke of any key

processing digital filters

\ulcorner	$\mathrm{MFn} .$	Temporary projection of "Mathematic functions"
value		
\ulcorner	M ${ }^{\text {N }}$	Temporary projection of "Min. value"
\ulcorner	MAX	Temporary projection of "Max. value"
\ulcorner	L. 1	Temporary projection of "Limit 1" value
\ulcorner	L. 2	Temporary projection of "Limit 2" value
\ulcorner	L. 3	Temporary projection of "Limit 3" value
\ulcorner	L. 4	Temporary projection of "Limit 4" value
\ulcorner	TIIM	Temporary projection of "TIME" value
\ulcorner	DAT. ${ }^{\text {¢ }}$	Temporary projection of "DATE" value
	TAR	Temporary projection of "TARE" value
\ulcorner	P.TA.	Temporary projection of "P. TARE" value
	COJ. ${ }^{\text {] }}$	Temporary projection of "CJC" value

!

Setting is identical for LEFT, DOWN, UP and ENTER

Assigning access to selected menu item

!

Setting is identical for LEFT, DOWN, UP and ENTER

6.2 SETTING "PROFI" - CHANNELS

The primary instrument parameters are set in this menu
6.2.1a DISPLAY PROJECTION \quad DC

6.2.1b SETTING FIXED TARE

PTA.

Setting "Fixed tare" value

> setting is designed for the event when it is necessary to firmly shift the beginning of the range by known size
> when setting (P.TA. A $\neq 0$) is in effect, display does not show the "T" symbol
> range of the setting: - $99 . . .999$

DE
$=0$

MDD.

Selection of digital filters
at times it is useful for better user projection of data on display to modify it mathematically and properly, wherefore the following filters may be used

arithmetic average from given number [.CON.") of measured values
range 2... 100
FLO. Selection of floating filter
floating arithmetic average from given number [.CON."] of measured data and updates with each measured value
range 2... 30

EXP.	Selection of exponential filter

integration filter of first prvniho grade with time constant [.CON.") measurement
range $2 \ldots 100$
RND. Measured value rounding
is entered by any number, which
determines the projection step
[e.g: "CON." $=2,5>$ display $0,2.5,5, \ldots$.]
$\square \mathrm{CON}$. Setting constants
this menu item is always displayed after selection of particular type of filter

```
DEF =
```


6. SETTING PROFI

FOR

Selection of decimal point
the instrument allows for classic projection of a number with positioning of the DP as well as projection with floating DP, allowing to display a number in its most exact form „FL. P.

DEF

LOA

Selection of storing data into instrument memory
by selection in this item you allow to register values into instrument memory
another setting in item "OUT. > MEM." (not in standard experiment]

MFn. Selection of mathematic functions

OFF Mathematic functions are off

MUL. Multinominal
$A x^{5}+B x^{4}+C x^{3}+D x^{2}+E x+F$
1/M $1 / x$
$\frac{A}{x^{5}}+\frac{B}{x^{4}}+\frac{C}{x^{3}}+\frac{D}{x^{2}}+\frac{E}{x}+F$
LOG. Logarithm
$A \times \ln \left(\frac{B x+C}{D x+E}\right)+F$
EXP. Exponential
$A \times e^{\left(\frac{B x+C}{D x+E}\right)}+F$
POW Power
$A \times(B x+C)^{(D x+E)}+F$
RT. Root
$A \times \sqrt{\frac{B x+C}{D x+E}}+F$
SN $\operatorname{Sin} x$
$A \sin ^{5} \mathrm{x}+B \sin ^{4} \mathrm{x}+C \sin ^{3} \mathrm{x}+D \sin ^{2} \mathrm{x}$
$+E \sin \mathrm{x}+F$
C.- Setting constants for calculation of mat.functions
this menu is displayed only after selection of given mathematic function

6. SETTING PROFI

6.2.2b MATHEMATIC FUNCTIONS - DECIMAL POINT

6.2.2c

1 NP .	Selection of evaluation of $\min /$ max value
selection of value from which the min/max value will be calculated	
NO	Evaluation of min/max value is off
C.A	From "Channel A"
F.A	From "Channel A" after digital filters processing
MFn.	From "Mathematic functions"

6. SETTING PROFI

6.3 SETTING „PROFI" - OUTPUTS

REW

Selection of the mode of data logging
selection of the mode in the event of full instrument memory

Rewriting values prohibited

Rewriting values permitted, the oldest get rewritten by
the latest

6.3.1b SETTING DATA LOGGING INTO INSTRUMENT MEMORY - RTC

RTC

The lowest recording rate possible is once a day, the highest is every second. Under exceptional circumstances it is possible to set the rate to 8 times per second by entering the recording period as 00:00:00. However, this mode is not recommended due to the memory overload. Recordings are realised in a timeframe of one day and are repeated periodically every following day. Recordings can take place either inside or outside of selected time intervals. The duration of re-writing can be determined by the number of channels recorded as well as by the recording rate.

STR
Start of data logging into instrument memory

- time format HH.MM.SS

Stop data logging into instrument memory
time format HH.MM.SS
PER $\begin{aligned} & \text { Period of data logging into } \\ & \text { instrument memory }\end{aligned}$
determines the period in which values will be logged in an interval delimited by the time set under items STR. and STO.
time format HH.MM.SS
records are made on a daily basis in selected interval and period
item not displayed if "SAV." is selected in menu [INP. > EXT.]

6.3.1c SETTING DATA LOGGING INTO INSTRUMENT MEMORY - FAST

FAST

The memory operates on the basis of memory oscilloscope. Select an area of 0...100\% of the memory capacity $(100 \%$ represents 8192 individual recordings for a single channel measurement]. This area is filled cyclically up to the point when the recording starts [activated by the front panel button or by an external input]. When the remaining memory capacity fills up the recording stops. A new recording is possible after the deletion of the latest recording. It is possible to abort a recording before its completion by reading out the data.

TRG.
 Setting logging data into inst. memory

logging data into inst. memory is governed by the folowing selection, which determines how many percent of the memory is reserved for data logging prior to initiation of trigger imputse initialization is on ext. input or button setting in range $1 . . .100 \%$
when setting 100%, datalogging works in the mode ROLL > data keep getting rewritten in cycles

1. Memory initialization

clear memory [ext.input, button]
LED "M" flashes, after reading TRG. [\%] memory is permanently shining. In ROLL flashes constantly.

2. Triggering

external input, button
after the memory LED is full " M " turns off in the ROLL mode the trigger ends datalogging and LED turns off

3. Termination

ext. input, button or reading data via RS

III

Selection evaluation of limits

- selection of value from which the limit will be evaluated

filters processing

| $\left.\begin{array}{\|r\|l}\text { MFn. } & \begin{array}{l}\text { Limit evaluation from } \\ \text { "Mathematic functions" }\end{array} \\ \hline \text { MNN } & \begin{array}{l}\text { Limit evaluation from } \\ \text { "Min. value" }\end{array} \\ \begin{array}{\|r\|l}\hline \text { MAX } & \begin{array}{l}\text { Limit evaluation from } \\ \text { "Max. value" }\end{array} \\ \hline\end{array}\end{array}\right)$ |
| ---: | :--- |

!
Setting is identical for L. 1, L. 2, L. 3 and L. 4

MOD.

Selection the type of limit

HYS.

Limit is in mode "Limit, hysteresis, delay"
for this mode the parameters of "L. 1 " are set, at which the limit will shall react, "H. 1" the hysteresis range around the limit [LIM $\pm 1 / 2 \mathrm{HYS}$] and time "T. 1 " determining the delay of relay switch-on

for this mode the parameters are set for interval "ON.1" the relay switch-on and "OF.1" the relay switch-off

DOS.

Dose limit
[periodic]
for this mode the parameters are set for "P. 1 " determining the limit value as well as its multiples at which the output is active and "T. 2" indicating the time during which is the output active

!

Setting is identical for L. 1, L. 2, L. 3 and L. 4

6. SETTING PROFI

6.3.2c

SELECTION OF TYPE OF OUTPUT

6.3.3b

ADD.
 Setting instrument address

setting in range D... 31
DEP = 00

ADM Setting instrument address - MODBUS
setting in range $1 . . .247$
DEP $=1$

APB. Setting instrument address

- PROFIBUS
setting in range $1 . . .127$
DEF $=19$

6. SETTING PROFI

6.3.3c SELECTION OF DATA OUTPUT PROTOCOL

PRO.

Selection of the type of analog output

ASC	Data protocol ASCII
MBS.	Data protocol
	Data protocol
	MODBUS-RTU

option is available only for RS 485

IN.
Selection evaluation analog output
selection of value from which the analog output will be evaluated

filters processing

TYP. Selection of the type of analog output
i 0 Type-0... 20 mA
E4T
Type: $4 \ldots 20 \mathrm{~mA}$ with indication
with broken loop detection and indication of error statement ($<3,6 \mathrm{~mA}$)

i $4 T$	Type: $4 . . .20 \mathrm{~mA}$ with indication

with broken loop detection ($<3,6 \mathrm{~mA}$)
E. 4 Type: $4 \ldots 20 \mathrm{~mA}$
with indic. of error statement $(<3,6 \mathrm{~mA})$

A.O.

Setting the analog output

 rangeanalog output is isolated and its value corresponds with displayed data. It is fully programmable, i.e. it allows to assign the $A O$ limit points to two arbitrary points of the entire measuring range

ALO. Assigning the display value
to the beginning of the
AO range

- range of the setting: $-99 . . .999$
DE = 0
AH . Assigning the display value to the end of the AO range
range of the setting: -99... 999
DF
$=100$

6. SETTING PROFI

by selecting display brightness we may appropriately react to light conditions in place of instrument location

after keystroke display furns on for 10 s

I NP. Selection of bargraph evaluation

- selection of value from which the analog output will be evaluated

Selection of bargraph projection mode

BAR Column projection

- the display shows only a column in one colorě

the display shows one point in one color

> 3C. 3-colored column projection
change of color is determined by set limits [COL. > bA.O; bA.1; bA.2]
upon exceeding the limit the color of the entire display, i.e. there is always only one column of one color lit

3 B. 3-colored bar projection, cascade
change of color is determined by the said limits [COL. > bA.D; bA.1; bA.2]
upon exceeding a limit color of the given display section is changing, i.e. the display may shine up to three colors at a time

6. SETTING PROFI

6.3.6c BARGRAPH - SETTING THE PROJECTION RANGE

6.3.6d BARGRAPH - SETTING COLOR

cal.
 Selection of bargraph color

the item "COL." is displayed only with selected mode ["BAR. > MOD."] "BAR." or "POI."

BAD

Selection of bargraph color
the item "COL." is displayed only with selected mode ["BAR. > MOD.") " 3 C." or " 3 B."

!

Setting is identical for bA. 1 and bA. 2

bL1

Setting color limits for color projection
the item "COL." is displayed only with selected mode ("BAR. > MOD.") "3 C." or "З B.."
items „b.L.1" and „b.L. 2 " determine the borders of the bargraph color changes

DEF = 33 (b.L.1)]
DFF = 66 (b.L.2)

!

Setting is identical for B.L. 2
6.3.6g BARGRAPH - SELECTION OF INVERSE PROJECTION

Selection of inverse projection of "Band 0"
the item "COL. is displayed only with selected mode ["BAR. > MOD."] "3 C." or "3 B.."
setting ,MO. $1^{\text {" }}$ is designed for projection where indication of zero center is required

Column in "bA.O" moves from left to right

I N.
Column in "bA.O" moves from right to left

6.3.6h BARGRAPH - SELECTION OF LIMITS PROJECTION

SHL.
 Selection of limit projection on the bargraph

limits are always displayed orange, always by one degree lighter or darker

6.3.6i BARGRAPH - SELECTION OF DISPLAY BRIEHTNESS

6. SETTING PROFI

6.4 SETTING "PROFI" - SERVICE

The instrument service functions are set in this menu

MNU.	Selection of menu type LIGHT/PROFI
RES.	Restore instrument manufacture setting and
calibration	
\ulcorner CAL.	Input range calibration for „DU" version
LAN.	Language version of instrument menu
NPA.	Setting new access password
1 D.	Instrument identification

MN. Selection of menu type LIGHT/PROFI

enables setting the menu complexity according to user needs and skills

UG.
 Active LIGHT menu

simple programming menu, contains only items necessary for configuration and instrument setting
linear menu > items one after another

PRO. Active PROFI menu

complete programming menu for expert users tree menu

I

Change of setting is valid upon next access into menu

RES.
Restoration of manufacture setting
in the event of error setting or calibration, manufacture setting may be restored

CAL. | Restoration of manufacture |
| :--- |
| calibration of the instrument |

prior executing the changes you will be asked to confirm you selection "YES"

SET. Restoration of instrument manufacture setting

TYP.	Restoration of instrument
manufacture setting	

generating the manufacture setting for currently selected type of instrument [items marked DEF)

USR	Restoration of instrument user setting

generating the instrument user setting, i.e. setting stored under SER./RES./SAV.

Save instrument user setting
storing the user setting allows the operator to restore it in future if needed

After restoration the instrument switches off for couple seconds

RESTORE

CALIBRATION SETTING

cancels USER menu rights	\checkmark	\checkmark
deletes table of items order in USER - LIGHT menu	\checkmark	\checkmark
adds items from manufcture to LIGHT menu	\checkmark	\checkmark
deletes data stored in FLASH	\checkmark	\checkmark
cancels or linearization tables	\checkmark	\checkmark
clears tare	\checkmark	\checkmark
restore manufacture calibration	\checkmark	\mathbf{x}
restore manufacture setting	x	\checkmark

6. SETTING PROFI

6.4.3

DU

CAL.

Input range calibration
when "C.Lo." is displayed, move the potentiometer traveller to the required minimum position and confirm by "Enter", calibration is confirmed by "YES"
when "C.Hi." is displayed, move the potentiometer traveller to required maximum position and confirm by ,Enter", calibration is confirmed by "YES"
6.4.4

LAN. Selection of instrument
menu language version

CZ.

Instrument menu is in Czech

ENG.
Instrument menu is in English
6.4.5

NPA. Setting new password for access to LIGHT and PROFI

menu

> this option allows to change the numeric code, which blocks the access into LIGHT and PROFI menu.
> numerci code range: $0 . .999$
> universal passwords in the event of loss: LIGHT Menu > . 177 "
> PROFI Menu > " 915^{*}

Projection of instrument SW version
display shows type identification of the instrument, SW number, SW version and current input setting (Made)
if the SW version reads a letter on first position, it is a customer SW

关	Pos.	Description
	1.	type of instrument
	2.	SW: number - version
	3.	the input type

III

SETTING USER

For user operation
Menu items are set by the user (Profi/Light] as per request

Access is not password protected

Optional menu structure either tree (PROFI) or linear (LIGHT)

7.0

 SETTING ITEMS INTO "USER" MENU- USER menu is designed for users who need to change only several items of the setting without the option to change the primary instrument setting (e.g. repeated change of limit setting]
- there are no items from manufacture permitted in USER menu
- on items indicated by inverse triangle
- setting may be performed in LIGHT or PROFI menu, with the USER menu then overtaking the given menu structure

Setting

item will not be displayed in USER menu
item will be displayed in USER menu with editing option

Setting sequence of items in "USER" menu

In compiling USER menu from active LIGHT menu the items (max. 10) may be assigned a sequence, in which they will be projected in the menu

Example of ranking the order of menu items in the "USER" menu

In this example we want to have a direct access to menu items Limit 1 and Limit 2 (example show is for the Light menu, but can equaly be used in the Profi menu].

The result of this setting is that when the (C) button is pressed, the display will read "L. $1^{\prime \prime}$. By pressing $->$ button you confirm your selection and then you can set the desired limit value, or by pressing the button you can go to setting of "L. 2" where you can proceed identically as with Limit one.
You can exit the setting by pressing the button by which you store the latest setting and pressing the (C) button will take you back to the measuring mode

Reference thermocouple

WITH REFERENCE THERMOCOUPLE

- a reference thermocouple may be located in the same place as the measuring instrument or in place with stable temperature/ compensation box
- when measuring with reference thermocouple set $C O N$ in the instrument menu to I $N \mathbb{R}$ or $\mathbf{E X 2}$
- when using a thermostat [a compensation box or environment with constant temperature] set in the instrument menu TG. . its temperature (applies for setting $\mathbf{C O N}$ to EX 2]
- if the reference thermocouple is located in the same environment as the measuring instrument then set in the instrument menu CON to $I \mathrm{~N}$.Based on this selection the measurement of the ambient temperature is performed by a sensor located in the instrument terminal board

WITHOUT REFERENCE THERMOCOUPLE

- inaccuracy originating from the creation of dissimilar thermocouples on the transition point terminal/conductor of the thermocouple is not compensated for in the instrument
- when measuring without reference thermocouple set CON in the instrument menu to $\mathbb{I L}$ or $\mathbf{E X I}$
- when measuring temperature without reference thermocouple the error in measured data may be as much as $10^{\circ} \mathrm{C}$ (applies for setting CON to EXI)

ERROR	CAUSE	ELIMINATION
E.d.	Number is too small (large negative) to be displayed	change DP setting, channel constant setting
E.d:-	Number is too large to be displayed	change DP setting, channel constant setting
E.t.	Number is outside the table range	increase table values, change input setting [channel constant setting]
E.t -	Number is outside the table range	increase table values, change input setting [channel constant setting]
	Input quantity is smaller than permitted input quantity range	change input signal value or input (range) setting
Ei :	Input quantity is larger than permitted input quantity range	change input signal value or input (range) setting
EHW	A part of the instrument does not work properly	send the instrument for repair
EEE	Data in EEPROM corrupted	perform restoration of manufacture setting, upon repeated error statement send instrument for repair
ESE.	Data in EEPROM outside the range	perform restoration of manufacture setting, upon repeated error statement send instrument for repair
ER.	Memory was empty (presetting carried out)	upon repeated error statement send instrument for repair, possible failure in calibration
Eou.	Analogue output current loop disconnected	check wire connection

The instruments communicate via serial line RS232 or RS485．For communication they use the ASCll protocol．Communication runs in the following format：

ASCII：$\quad 8$ bit，no parity，one stop bit
DIN MessBus： 7 bit，even parity，one stop bit

The transfer rate is adjustable in the instrument menu．The instrument address is set in the instrument menu in the range of $0 \div 31$ ．The manufacture setting always presets the ASCll protocol，rate of 9600 Baud，address 00 ．The type of line used－RS232 ／RS485－is determined by an output board automatically identified by the instrument．
The commands are described in specifications you can find at www．orbit．merret．eu or software OM Link．

DETAILED DESCRIPTION OF COMMUNICATION VIA SERIAL LINE

EVENT	TYPE	PRO	toco	TRANSM	ITT											
Data solicitation［PC］		ASCI		\＃	A	A	＜CR									
		Mess	sus	No－data	is t	ted	perma	ently								
		ASCII		\＃	A	A	＜CR									
		Mess	sbus	＜SADR＞	＜E											
Data transmission（instrument）		ASCII		＞	\square	（口）	（口）	（口）	（D）		（D）	（D）	（D）	（D）	＜CR＞	
		Mess	sus	＜STX＞	\square	（D）	（口）	（D）	（D）		（D）	（D）	（D）	（D）	＜ETX＞	＜BCC＞
	$\stackrel{\square}{0}$	ASCII		＞	\square	（D）	［D］	＜CR＞								
		Mess	sBus	＜STX＞	\square	（口）	（口）	（D）	（D）		（D）	（口）	（D）	（D）	＜ETX＞	＜BCC＞
$\begin{aligned} & \text { Confirmation of data acceptannce } \\ & \text { (PC) - OK } \\ & \hline \end{aligned}$				＜DLE＞	1											
Confirmation of data acceptance ［PC］－Bad	$\stackrel{\bullet}{\square}$	Mess	Bus	＜NAK＞												
Sending address（PC）prior command				＜EADR＞	$<E$											
Confirmation of address（instrument）				＜SADR＞	$<E$											
Command transmission（PC）	\sim	ASCI		\＃	A	A	N	P	（D）	（D）	（D）	（口）	（D）	（D）	［口］	＜CR＞
		Mess	sus	＜STX＞	\＄	N	P	［口］	（D）		（D）	（D）	（D）	（D）	＜ETX＞	＜BCC＞
	$\stackrel{\square}{0}$	ASCI		\＃	A	A	N	P	（D）		（D）	（D）	（D）	（D）	（D）	＜CR＞
		Mess	sus	＜STX＞	\＄	N		（D）	（D）		（D）	（D）	（D）	（D）	＜ETX＞	＜BCC＞
Command confirmation［instrument）		$\overline{\bar{j}}$	OK	$!$	A	A	＜CR									
	N్N			？	A	A	＜CR									
		Mess	sbus	No－data	is \dagger	ted	perma	ently								
		亏	OK	！	A	A	$<\mathrm{CR}$									
			Bad	？	A	A	＜CR									
		is 0	OK	＜DLE＞	1											
		$\sum^{\circ} \mathrm{\infty}$		＜NAK＞												
Instrument identification				\＃	A	A	1	Y	＜LR＞							
HW identification				\＃	A	A	1	Z	＜LR＞							
One－time transmission				\＃	A	A	7	\times	＜LR＞							
Repeated transmission				\＃	A	A	8	\times	＜CR＞							

SING	RANGE		DESCRIPTION
\#	35	23_{H}	Command beginning
A A	0... 31		Two characters of instrument address [sent in ASCII - tens and units, e.g. "01", " 99 " universal
<CR>	13	OD ${ }_{\text {H }}$	Carriage return
<SP>	32	$2 \mathrm{O}_{\mathrm{H}}$	Space
N, P			Number and command - command code
-			Data-usually characters "0"..."9", "-", "."; (D)-dp. and (-) may prolong data
R	$30_{H} \ldots 3 \mathrm{~F}_{\mathrm{H}}$		Relay and tare status
$!$	33	21_{H}	Positive confirmation of command [ok]
?	63	$3 \mathrm{~F}_{\mathrm{H}}$	Negative confirmation of command (point)
>	62	$3 \mathrm{E}_{\mathrm{H}}$	Beginning of transmitted data
<STX>	2	O^{H}	Beginning of text
<ETX>	3	OB_{H}	End of text
<SADR>	adresa $+6 \mathrm{O}_{\mathrm{H}}$		Prompt to send from address
<EADR>	adresa $+4 \mathrm{O}_{\mathrm{H}}$		Prompt to accept command at address
<ENQ>	5	OF_{H}	Terminate address
<DLE>1	1649	$10_{H} 31_{H}$	Confirm correct statement
<NAK>	21	15_{H}	Confirm error statement
<BCC>			Check sum -XOR

RELAY, TARE

SigN	RELAY 1	RELAY 2	TARE	CHANGE RELAY 3/4
P	0	0	0	0
\square	1	0	0	0
R	0	1	0	0
S	1	1	0	0
T	0	0	1	0
U	1	0	1	0
V	0	1	1	0
W	1	1	1	0
p	0	0	0	1
q	1	0	0	1
r	0	1	0	1
s	1	1	0	1
+	0	0	1	1
u	1	0	1	1
v	0	1	1	1
W	1	1	1	1

Relay status is generated by command \#AABX <CR>. The instrument immediately returns the value in the format $>H H<C R>$, where $H H$ is value in HEX format and range $\mathrm{OO}_{\mathrm{H}^{\prime} . . \mathrm{FF}}^{\mathrm{H}}$. The lowest bit stands for ${ }_{\text {„Relay }}$ 1", the highest for "Relay 8"

PROJECTION

Display:	24-segment 3-color bargraph red/green/orange
Auxiliary display	999 , intensive red or green 7 segment LED, digit height $9,1 \mathrm{~mm}$
Projection:	$24 \mathrm{LED} /-99 \ldots . .999$
Decimal point:	adjustable - in menu Brightness:
	adjustbale - in menu

INSTRUMENT ACCURACY

TC:
Accuracy
Resolution
Rate:
50 ppm $/{ }^{\circ} \mathrm{C}$ $\pm 0,1 \%$ of range +1 digit $\pm 0,15 \%$ of range +1 digit $0,01 \% / 0,1^{\circ} 1^{\circ}$

RTD, T/C RTD

Overload capacity: 10x ($t<100 \mathrm{~ms}$) not for 500 V and 5 A , 2x (long-term)
Linearisation: by linear interpolation in 38 points - solely via OM Link

Digital filters: Averaging, Floating average, Exponential filter, Rounding
Comp. of conduct: max. $40 \Omega / 100 \Omega$ RTD
Comp. of cold junc.: adjustable T/C $0^{\circ} . .99^{\circ} \mathrm{C}$ or automatic
Functions: Tare - display resetting
Hold - stop measuring [at contact]
Lock - control key locking
MM - min/max value
Mathematic functions
OM Link:
Watch-dog:
Calibration:
company communication interface for setting, operation and update of instrument SW reset after 400 ms
at $25^{\circ} \mathrm{C}$ and 40% of r.h.

COMPARATOR

Type:
Mode:
Limita:
Hysteresis:
Delay:
Outputs:

Relay:
digital, adjustable in menu
Hysteresis, From, Dosing
-99... 999
0...999999
0...99,9 s
$2 \times$ relays with switch-on contact (Form A) (230 VAC/30 VDC, 3 A)*
$2 \times$ relays with switch-off contact (Form C)
($230 \mathrm{VAC} / 50 \mathrm{VDC}, 3$ A)*
$2 x$ SSR ($250 \mathrm{VAC} / 1 \mathrm{~A})^{*}$
$2 x / 4 x$ open NPN collector ($30 \mathrm{VDC} / 100 \mathrm{~mA}$) $2 x$ bistabil relays (250 VAC/250 VDC, 3 A/0,3 A)*
$1 / 8 \mathrm{HP} 277$ VAC, 1/10 HP 125 V, Pilot Duty 0300

DATA DUTPUTS

Protocols:
Data format:

Rate:

RS 232:
RS 485:

PROFIBUS

ASCII, DIN MessBus, MODBUS, PROBUS 8 bit + no parity + 1 stop bit (ASCII) 7 bit + even parity +1 stop bit (MessBus) 600... 230400 Baud 9600 Baud... 12 Mbaud [PROFIBUS] isolated, two-way communication isolated, two-way communication, addressing (max. 31 instruments) Data protocol SIEMENS

ANALOG OUTPUTS

Type:

Non-linearity:
TC:
Rate:
Voltage:
Curernt:
isolated, programmable with 16 bits D/A convertor, analogoutput corresponds with displayed data, type and range are adjustable 0,1\% of range
$15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
response to change of value $<1 \mathrm{~ms}$
$0 . . .2 \mathrm{~V} / 5 \mathrm{~V} / 10 \mathrm{~V} / \pm 10 \mathrm{~V}$
$0 . .5 / 20 \mathrm{~mA} / 4 \ldots 20 \mathrm{~mA}$

- compensation of conduct to $500 \Omega / 12 \mathrm{~V}$ or $1000 \Omega / 24 \mathrm{~V}$

MEASURED DATA RECORD

Type RTC:

Type FAST:

Transmission:

EXCITATION

Adjustbale:
time-controlled logging of measured data into instrument memory, allows to log up to 250000 values fast data logging into instrument memory allows to \log up to 8000 values at a rate of 40 records/s
via data output RS 232/485 or via OM Link
5... $24 \mathrm{VDC} / \mathrm{max} .1,2 \mathrm{~W}$, isolated

POWER SUPPLY

Options:
$10 . . .30 \vee \mathrm{AC} / \mathrm{DC}$, max. $13,5 \vee \mathrm{VA}, \mathrm{PF} \geq 0,4$ $\mathrm{I}_{\mathrm{STP}}<40 \mathrm{~A} / 1 \mathrm{~ms}$, isolated

- fuse inside (T 4000 mA]

80 ... $250 \mathrm{~V} \mathrm{AC/DC}, \mathrm{max} 13,.5 \mathrm{VA}, \mathrm{PF} \geq 0,4$,
$\mathrm{I}_{\mathrm{STP}}<40 \mathrm{~A} / 1 \mathrm{~ms}$, isolated

- fuse inside (T 630 mA]

MECHANIC PROPERTIES

Material:
Dimensions:
Panel cut-out:

Noryl GFN2 SE1, incombustible UL 94 V-I $48 \times 96 \times 120 \mathrm{~mm}$
$45 \times 90,5 \mathrm{~mm}$

OPERATING CONDITIONS

Connection:
connector terminal board, conductor cross-section $<1,5 \mathrm{~mm}^{2} /<2,5 \mathrm{~mm}^{2}$
Stabilisation period: within 15 minutes after switch-on
Working temp.: $\quad-20^{\circ} . .60^{\circ} \mathrm{C}$
Storage temp.: $\quad-20^{\circ} . .85^{\circ} \mathrm{C}$
Cover:
Construction
IP64 (front panel only)
safety class I
Dielectric strength: 4 kVAC after 1 min between supply and input 4 kVAC after 1 min between supply and data/ analog output
4 kVAC after 1 min between supply and relay output
$2,5 \mathrm{kVAC}$ after 1 min between supply and data/ analog output
Overvoltage cat.: EN 61010-1, A2
for pollution degree II, measurement cat. III instrum.power supply > 670 V (PI), 300 V (DI) Input/output > 300 V [PI], 150 (DI)
EMC: EN 61326-1
Seismic resistance: IEC 980: 1993, par. 6
**Table of rate of measurement in relation to number of inputs

Channels/Rate	$\mathbf{4 0}$	$\mathbf{2 0}$	$\mathbf{1 0}$	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0 , 5}$	$\mathbf{0 , 2}$	$\mathbf{0 , 1}$
No.of channels: 1 (Type: DC, PM, DU)	40,00	20,00	10,00	5,00	2,00	1,00	0,50	0,20	0,10
No.of channels: 2	5,00	2,50	1,25	1,00	0,62	0,38	0,22	0,09	0,05
No.of channels: 3	3,33	1,66	0,83	0,66	0,42	0,26	0,14	0,06	0,03
No.of channels: 4	2,50	1,25	0,62	0,50	0,31	0,19	0,11	0,05	0,02
No.of channels: 1 (Type: OHM, RTD, T/C)	5,00	2,50	1,25	1,00	0,62	0,38	0,22	0,09	0,05
No.of channels: 2	3,33	1,066	0,83	0,66	0,42	0,26	0,14	0,06	0,03
No.of channels: 3	2,50	1,25	0,62	0,50	0,31	0,19	0,11	0,05	0,02
No.of channels: 4	2,00	1,00	0,50	0,40	0,25	0,15	0,08	0,04	0,02

PI - Primary insulation, 미 - Double insulation

Front view

Side view

Pranal thirknose $\cap 5 \quad 0 \cap \mathrm{~mm}$

OMB 412UNI
A
Type
Manufacturing No.
Date of sale

$$
\square \sqrt{\square} \square
$$

A guarantee period of 60 months from the date of sale to the user applies to this instrument.
Defects occuring during this period due to manufacture error or due to material faults shall be eliminated free of charge.

For quality, function and construction of the instrument the guarantee shall apply provided that the instrument was connected and used in compliance with the instructions for use.

The guarantee shall not apply to defects caused by:

```
- mechanic damage
- transportation
- intervention of unqualified person incl. the user
- unavoidable event
- other unprofessional interventions
```


Company: ORBIT MERRET, spol. s r.o.
Manufactured: ORBIT MERRET, spol. s r.o. documentation and requirements of the appurtenant Czech statutory orders.

Product: Programmable panel instrument

Type
 OMB 412

Version: UNI, UOC, PWR, RSKlánova 81/141, 14200 Prague 4, Czech Republic, IDNo.: 00551309
Vodňanská 675/30, 19800 Prague 9, Czech Republic
declares at its explicit responsibility that the product presented hereunder meets all technical requirements, is safe for use when utilised under the terms and conditions determined by ORBIT MERRET, spol.s r.o. and that our company has taken all measures to ensure conformity of all products of the types referred-to hereunder, which are being brought out to the market, with technical

Thas been designed and manufactured in line with requirements of:

Statutory order no. 17/2003 Coll., on low-voltage electrical equipment [directive no. 73/23/EHS]
Statutory order no. 616/2006 Coll., on electromagnetic compatibility [directive no. 2004/108/EHS)

The product qualities are in conformity with harmonized standard:

El. safety:	EN 61010-1
EMC:	EN 61326-1
	Electronic measuring, control and laboratory devices - Requirements for EMC "Industrial use" EN 50131-1, chap. 14 and chap. 15, EN 50130-4, chap. 7, EN 50130-4, chap. 8, (EN 61000-4-11, ed. 2], EN 50130-4, chap. 9 (EN 61000-4-2), EN 50130-4, chap. 10, (EN 61000-4-3, ed. 2), EN 50130-4, chap. 11 (EN 61000-4-6), EN 50130-4, chap. 12, (EN 61000-4-4, ed. 2], EN 50130-4, chap. 13 (EN 61000-4-5), EN 61000-4-8, EN 61000-4-9, EN 61000-6-1, EN 61000-6-2, EN 55022, chap. 5 and chap. 6

Seismic resistance: IEC 980: 1993, par. 6

The product is furnished with CE label issued in 2007

As documentation serve the protocoles of authorized and accredited organizations:
EMC MO CR, Testing institute of technical devices, protocol no. 80/6-328/2006 of 15/01/2007 MO CR, Testing institute of technical devices, protocol no. EMI.80/6-333/2006 of 15/01/2007
Seismic resistance VOP-026 Stemberk, protocol no.: 6430-109/2007 of 13/09/2007

Place and date of issue:
Prague, 19. Juli 2010
Miroslav Hackl
Company representative

[^0]
[^0]: Assessment of conformity pursuant to $\S 22$ of Act no. 22/1997 Coll. and changes as amended by Act no. $71 / 2000$ Coll. and $205 / 2002 \mathrm{Coll}$

